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Abstract

nWe consider n-firm symmetric Cournot oligopoly supergames where the

inverse demand function is linear and the firmsʼ cost functions are quadratic with

nnon-decreasing marginal costs. For each n, we compute the smallest common

discount factor at which full collusion among the firms is sustained by some

subgame perfect equilibrium with symmetric punishments. This discount factor is

also the smallest discount factor at which the full collusion is sustained by some

subgame perfect equilibrium, regardless of whether the punishments are

nsymmetric or asymmetric, if and only if n is greater than some specific number.

1．Introduction

In oligopoly theory, collusive behaviour is often explained by using infinitely repeated

games with discounting（supergames）where a deviant firm is “punished” according to some

punishment mechanism. In his classic work, Friedman（1971）introduced trigger strategies

which entail a punishment by moving to the Nash equilibrium of the constituent game

indefinitely. On the other hand, in the context of symmetric Cournot oligopoly supergames,

Abreu（1986）introduced stick-and-carrot strategies. In these strategies, if a firm deviates,

then all firms including the deviant firm choose large outputs for just one period to punish

each other, and then revert to the original collusion.

nIn the present paper we consider n -firm symmetric Cournot oligopoly supergames,

where the inverse demand function is linear and the firms（̓identical）cost functions are

nquadratic with non-decreasing（possibly constant）marginal costs. For each n, we compute

the smallest common discount factor at which full collusion among the firms is sustained by

some subgame perfect stick-and-carrot strategy profile. Abreuʼs results imply that such a

discount factor is the smallest discount factor at which the full collusion is sustained by some
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subgame perfect equilibrium with symmetric punishments.1） It further follows from the

results in Abreu（1986）and Segerstrom（1991）that it is the smallest discount factor at

which the full collusion is sustained by some subgame perfect equilibrium, regardless of

nwhether the punishments are symmetric or asymmetric, if and only if n is greater than some

specific number. Finding the smallest common discount factor is of interest, especially from

the viewpoint of the stability of collusion.

The paper proceeds as follows. Section 2 presents the model, and Section 3 presents the

results.

2．The Model

We consider an industry producing a homogeneous commodity with a given number of

n≥2firms n≥2. All firms have identical cost functions and face an inverse demand function. We

i C (q) F (Q )denote the cost function of firm i by C (q) , and the inverse demand function by F (Q ) , where

q i Q=∑


qq is the output of firm i and Q=∑


q. We assume that

C (q) = cq+eq
 q ∈ 0, ∞), F (Q ) = a−bQ Q∈ 0, ∞),C (q) = cq+eq
 for all q ∈ 0, ∞), F (Q ) = a−bQ for all Q∈ 0, ∞),

a>c>0, b>0, e≥0 iwith a>c>0, b>0, e≥0. The profit of firm i is, therefore,

π (q, X ) ≡ F (q+X )q−C (q) = (a−c−bX )q−(b+e )q
 ,π (q, X ) ≡ F (q+X )q−C (q) = (a−c−bX )q−(b+e )q
 ,

X=∑ qwhere X=∑ q.

nThe above situation defines a strategic form game with n players（firms）, in which the

i q∈0, ∞) π (q, ∑ q) nstrategy of player i is q∈0, ∞) and her payoff is π (q, ∑ q) . We denote this n-player

Ggame by G.

q(X )≡arg max π (q, X ) q(X )Let q(X )≡arg max π (q, X ) . q(X ) is the reaction function. It is simple to check

that

q(X ) = max (a−c−bX )2(b+e ) , 0 , π(X ) ≡ max π (q, X ) = (b+e )q(X ).q(X ) = max (a−c−bX )2(b+e ) , 0 , π(X ) ≡ max π (q, X ) = (b+e )q(X ).

（1）

G (q, ⋯, q)A Cournot-Nash equilibrium in G is an output vector (q, ⋯, q) such that, for each firm

i q=q π (q, ∑ q) . i q=(a−c )b (n+1)i, q=q maximizes π (q, ∑ q) . It follows from（1）that, for all i, q=(a−c )b (n+1)

+2e  π (q, ∑ q)=(a−c )(b+e )b (n+1)+2e +2e  and π (q, ∑ q)=(a−c )(b+e )b (n+1)+2e . We denote the Cournot-Nash

q πequilibrium output and the corresponding profit of each firm by q and π, respectively. Thus,
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q =
(a−c )

b (n+1)+2e
, π =

(a−c )(b+e )

b (n+1)+2e 
.q =

(a−c )
b (n+1)+2e

, π =
(a−c )(b+e )

b (n+1)+2e 
. （2）

If all firms collude to maximize total industry profit, the output of each firm and the

corresponding profit are

q ≡
(a−c )

2(bn+e )
, π ≡

(a−c )

4(bn+e )
.q ≡

(a−c )
2(bn+e )

, π ≡
(a−c )

4(bn+e )
. （3）

e=0Here, if e=0（i.e., if marginal cost is constant）, we assume that the total industry output is

divided equally among the firms.

If a firm deviates from the above collusion, it follows from（1）that its profit-maximizing

output and profit are

q ≡ q( (n−1)q) =
(a−c ) b (n+1)+2e 

4(bn+e ) (b+e )
,q ≡ q( (n−1)q) =

(a−c ) b (n+1)+2e 
4(bn+e ) (b+e )

,

π ≡ π( (n−1)q) = (b+e ) (q) =
(a−c ) b (n+1)+2e 

16(bn+e )(b+e )
.π ≡ π( (n−1)q) = (b+e ) (q) =

(a−c ) b (n+1)+2e 

16(bn+e )(b+e )
. （4）

GWe next describe the repeated game in which the game G is repeated infinitely often

δ∈(0, 1) G(δ )and all firms face the common discount factor δ∈(0, 1) . We denote this game by G(δ ) .2）

q (t ) t Q≡q (t ) Let q (t ) be an output vector at period t. A stream of output vectors Q≡q (t )  is

G(δ )called an outcome path or punishment. A strategy profile in G(δ ) generates an outcome

(Q, Q, ⋯, Q) (n+1)path inductively. Let (Q, Q, ⋯, Q) be an (n+1) -vector of outcome paths associated with

Qthe following strategy profile : The firms initially play outcome path Q until some firm

Q i Q Qdeviates from Q ; if firm i deviates from Q then the firms play punishment Q until some

j Q Q firm deviates ; if firm j deviates from Q then the firms play punishment Q until some firm

deviates ; and so on. Such a strategy profile is called a simple strategy profile. Abreu（1988,

QProposition 5）proved that Q is the outcome of a subgame perfect equilibrium if and only if it

is the outcome of some subgame perfect simple strategy profile. Thus, to analyze the

outcomes of subgame perfect equilibria, we can restrict attention to simple strategy profiles.

In what follows, we will identify a simple strategy profile with the associated vector of

(Q, Q, ⋯, Q)outcome paths (Q, Q, ⋯, Q) .

Q≡q(t )  k=0, 1, ⋯, n q (t )=(q, q, ⋯, q) tLet Q≡q(t )  for k=0, 1, ⋯, n. If q (t )=(q, q, ⋯, q) for all t, the total

Qindustry profit is maximized at all periods of the initial outcome path Q. In this case, we call

QQ the fully collusive outcome path, or simply, the maximal collusion.

In the present context where our focus is on the maximal collusion, a trigger strategy

(Q, Q, ⋯, Q) q (t ) =profile can be defined by a vector of outcome paths (Q, Q, ⋯, Q) such that q (t ) =

(q, q, ⋯, q) t k=1, ⋯, n, q(t )=(q, q, ⋯, q) t(q, q, ⋯, q) for all t, and for each k=1, ⋯, n, q(t )=(q, q, ⋯, q) for all t. It can be
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G(δ )verified that the trigger strategy profile is a subgame perfect equilibrium in G(δ ) if and

only if

δ≥ δ ≡
π−π

π−π .δ≥ δ ≡
π−π

π−π . 3） （5）

This means that the maximal collusion is the outcome of the subgame perfect trigger

G(δ ) δ≥δstrategy profile in G(δ ) if and only if δ≥δ.

In the context of symmetric Cournot oligopoly supergames, Abreu（1986）introduced

stick-and-carrot strategies. In the present context, a（symmetric）stick-and-carrot strategy

q (Q, Q, ⋯, Q)profile with stick q is defined by a vector of outcome paths (Q, Q, ⋯, Q) such that

q (t )=(q, q, ⋯, q) t k=1, ⋯, n, q(1)=(q , q , ⋯, q ) q(t )=q (t )=(q, q, ⋯, q) for all t, and for each k=1, ⋯, n, q(1)=(q , q , ⋯, q ) and q(t )=

(q, q, ⋯, q) t≥2(q, q, ⋯, q) for all t≥2.

Let

π ≡ π (q , (n−1)q ) , π  ≡ π( (n−1)q ) .π ≡ π (q , (n−1)q ) , π  ≡ π( (n−1)q ) .

Then the following conditions are necessary and sufficient for a stick-and-carrot strategy

q G(δ )profile with stick q to be a subgame perfect equilibrium in G(δ ) :

π+δπ ≥ π+δπ , π+δπ ≥ π +δπ .π+δπ ≥ π+δπ , π+δπ ≥ π +δπ . （6）

The former inequality means that one-shot deviations from the collusive phase are not

profitable. The latter inequality means that one-shot deviations from the punishment phase

are not profitable.4）

We are interested in the smallest discount factor satisfying（6）. We call such a discount

f (q ) g (q )factor the critical discount factor. To compute it, define the functions f (q ) and g (q ) for

q∈q, ∞)q∈q, ∞) by

f (q ) ≡ (π−π)(π−π ) , g (q ) ≡ (π −π )(π−π ) .f (q ) ≡ (π−π)(π−π ) , g (q ) ≡ (π −π )(π−π ) .

f (q ) g (q ) δ π+δπ=π+δπ π+δπ=π +δπf (q ) and g (q ) are the values of δ satisfying π+δπ=π+δπ and π+δπ=π +δπ ,

f (q ) g (q ) q, ∞) f (q)>0=g (q) f ′ (q )<0respectively. Then f (q ) and g (q ) are continuous on q, ∞) , f (q)>0=g (q) , f ′ (q )<0 for

q>q g (q )∈(0, 1) q>q f (q ) → 0 q →∞ g (q ) → 1 q →∞all q>q, g (q )∈(0, 1) for all q>q, f (q ) → 0 as q →∞, and g (q ) → 1 as q →∞. Moreover,

g (q ) q>qit can be shown that g (q ) is strictly increasing for all q>q. 5）Let

δ ≡min δ∈(0, 1)  δ≥ f (q ) and δ≥ g (q ) for some q ∈ q, ∞)  .δ ≡min δ∈(0, 1)  δ≥ f (q ) and δ≥ g (q ) for some q ∈ q, ∞)  .

δ f (q ) g (q )Clearly, δ is the critical discount factor, and the properties of f (q ) and g (q ) described

δ δ=f (q )=g (q ) qabove assure that δ exists and satisfies δ=f (q )=g (q ) for some q . Hence we have
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π+δπ = π+δπ , π+δπ = π +δππ+δπ = π+δπ , π+δπ = π +δπ （7）

q q δfor some q . In the next section we compute q and δ satisfying（7）.

3．Critical Discount Factors

In this section we compute the critical discount factor at which the maximal collusion is

the outcome of some subgame perfect stick-and-carrot strategy profile. To this end, we

rewrite（7）as

δ =
π−π

π−π
=

π −π

π−π
.δ =

π−π

π−π
=

π −π

π−π
. （8）

The latter equality in（8）implies

π−π = π −π ,π−π = π −π , （9）

and it follows from（3）and（4）that

π−π =
(a−c )b (n−1)

16(bn+e )(b+e )
.π−π =

(a−c )b (n−1)

16(bn+e )(b+e )
. （10）

π >0 q( (n−1)q )>0As for the right-hand side of（9）, we first assume that π >0. Then q( (n−1)q )>0 ;

hence it follows from（1）that

q ≡ q( (n−1)q ) =
(a−c )−b (n−1)q

2(b+e )
,q ≡ q( (n−1)q ) =

(a−c )−b (n−1)q
2(b+e )

,

π  = (b+e ) (q) =
 (a−c )−b (n−1)q 

4(b+e )
.π  = (b+e ) (q) =

 (a−c )−b (n−1)q 

4(b+e )
.

Routine computations yield

π −π =
 (a−c )−b (n−1)q 

4(b+e )
− (a−c )q−(bn+e )q π −π =

 (a−c )−b (n−1)q 

4(b+e )
− (a−c )q−(bn+e )q 

=
 b (n+1)+2e q−(a−c ) 

4(b+e )
.=

 b (n+1)+2e q−(a−c ) 

4(b+e )
. （11）

qSubstituting（10）and（11）into（9）and solving it, we obtain two values of q , and the larger

one is

q =
(a−c ) b (3n−1)+2e 
2(bn+e ) b (n+1)+2e 

.q =
(a−c ) b (3n−1)+2e 
2(bn+e ) b (n+1)+2e 

. （12）

Hence
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π =
(a−c ) b (3n−1)+2e  b (3−n )+2e 

4(bn+e ) b (n+1)+2e 
.π =

(a−c ) b (3n−1)+2e  b (3−n )+2e 

4(bn+e ) b (n+1)+2e 
. （13）

This and（3）yield

π−π =
(a−c )b (n−1)

(bn+e ) b (n+1)+2e 
.π−π =

(a−c )b (n−1)

(bn+e ) b (n+1)+2e 
. （14）

Substituting（10）and（14）into（8）, we obtain

δ =
π−π

π−π
=

b (n+1)+2e 

16(bn+e ) (b+e )
.δ =

π−π

π−π
=

b (n+1)+2e 

16(bn+e ) (b+e )
. （15）

π >0 q>0Now, since we have assumed π >0, we have q>0. Hence it follows from（1）that

(a−c )−b (n−1)q>0(a−c )−b (n−1)q>0. Substituting（12）into this inequality, we obtain

n−1 < 2(1+ 2 ) (1+eb ) .n−1 < 2(1+ 2 ) (1+eb ) . （16）

δ δ∈(0, 1)Also, it can be checked that if（16）holds then δ in（15）satisfies δ∈(0, 1) .

π =0We next assume that π =0. Then from（9）we have

π−π = π.π−π = π. （17）

Substituting this into（8）and using（4）and（10）, we have

δ =
π−π

π−π
=

π−π

π =
b (n−1)

b (n+1)+2e 
.δ =

π−π

π−π
=

π−π

π =
b (n−1)

b (n+1)+2e 
. （18）

δ∈(0, 1)Clearly, δ∈(0, 1) . It also follows from（17）and（10）that

π = π−π = −
(a−c )b (n−1)

16(bn+e )(b+e )
.π = π−π = −

(a−c )b (n−1)

16(bn+e )(b+e )
. （19）

π=(a−c )q−(bn+e )q Putting π=(a−c )q−(bn+e )q  in（19）and solving it, we obtain

q =
(a−c ) 2(bn+e ) (b+e )+b (n+1)+2e   (bn+e ) (b+e ) 

4(bn+e )(b+e )
.q =

(a−c ) 2(bn+e ) (b+e )+b (n+1)+2e   (bn+e ) (b+e ) 

4(bn+e )(b+e )
. （20）

π =0 q=0 (a−c )−Since we have assumed π =0, we have q=0 ; hence（1）implies that (a−c )−

b (n−1)q≤0b (n−1)q≤0. Substituting（20）into this inequality yields

n−1 ≥ 2(1+ 2 ) (1+eb ) .n−1 ≥ 2(1+ 2 ) (1+eb ) . （21）

π >0Summarizing, we have shown that if π >0 then（15）and（16）hold true. On the other

π =0hand, if π =0 then（18）and（21）hold true. Since（16）holds if and only if（21）does not hold,

we have established :
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n 2(1+ 2 ) (1+eb )Proposition. Let n be the smallest integer not less than 2(1+ 2 ) (1+eb ) . Then

δ = 
b (n+1)+2e 

16(bn+e ) (b+e )
if n≤n

b (n−1)

b (n+1)+2e 
if n>n.

δ = 
b (n+1)+2e 

16(bn+e ) (b+e )
if n≤n

b (n−1)

b (n+1)+2e 
if n>n.

The following corollary is immediate from the above proposition.

e=0Corollary. If e=0（i.e., if marginal cost is constant）, then

δ = 
(n+1)

16n
if n≤5

(n−1)

(n+1)
if n≥6.

δ = 
(n+1)

16n
if n≤5

(n−1)

(n+1)
if n≥6.

n=2 γ=1The case n=2 of the above corollary is obtained by putting γ=1（no product

differentiation）in the Cournot-type model of Lambertini and Sasaki（1999）. This duopoly

case has also been derived in Belleflamme and Peitz（2015, pp. 365-366）.

As was mentioned in the Introduction, the results in Abreu（1986）imply that the critical

δdiscount factor δ in the above proposition is in fact the smallest common discount factor at

which the maximal collusion is the outcome of some subgame perfect simple strategy profile

with symmetric punishments.（Here, a punishment is said to be symmetric if all firms choose

the same output at each period of the punishment path.）This result is derived as follows : Let

δ ′δ ′ be the smallest common discount factor at which the maximal collusion is the outcome of

some subgame perfect simple strategy profile with symmetric punishments. Then these

δ ′punishments are the most severe symmetric punishments ; for otherwise, δ ′ is not the

πsmallest common discount factor. Since the Cournot-Nash equilibrium profit π in（2）is

strictly positive, Theorems 13 and 14 in Abreu（1986）then guarantee that this subgame

perfect simple strategy profile has a stick-and-carrot punishment structure. This implies that

δ ′=δδ ′=δ. 6）

In the case of trigger strategies, we can compute from（2）,（3）,（4）and（5）that, for all

n,n,

δ =
b (n+1)+2e 

b (n+1)+2e +4(bn+e ) (b+e )
.δ =

b (n+1)+2e 

b (n+1)+2e +4(bn+e ) (b+e )
.

δ<δ n e=0We can confirm that δ<δ for all n. Also, if e=0, we have

δ =
(n+1)

(n+1)+4n
.δ =

(n+1)

(n+1)+4n
.
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δ δ e=0 e=bThe values of δ and δ for the cases e=0 and e=b are as follows :

e=0 e=b

n δ δ δ δ

2 0.28 0.53 0.26 0.51

3 0.33 0.57 0.28 0.53

4 0.39 0.61 0.31 0.55

5 0.45 0.64 0.33 0.57

6 0.51 0.67 0.36 0.59

7 0.56 0.70 0.39 0.61

8 0.61 0.72 0.42 0.63

9 0.64 0.74 0.45 0.64

e=0, δ δ e=bCompared with the case e=0, the values of δ and δ in the case e=b are smaller. This

is because, in the latter case, larger outputs incur higher marginal costs and hence deviations

from the maximal collusion are less profitable.

F (Q )=a−bQ Q∈0, ∞)The inverse demand function F (Q )=a−bQ for all Q∈0, ∞) implies that the price

F (Q ) Q>abF (Q ) is negative when Q>ab ; and in the present context a negative price is meaningless.

It is worth noting, however, that the results in this paper hold true even if we assume instead

F (Q )=maxa−bQ, 0 Q∈0, ∞) ca≥1nthat F (Q )=maxa−bQ, 0 for all Q∈0, ∞) , provided that ca≥1n. In this case, there

π >0 F (nq )>0 π >0 F (nq )=0 π =0are three possibilities :（a）π >0 and F (nq )>0 ;（b）π >0 and F (nq )=0 ;（c）π =0.

ca≥1nWhen ca≥1n, case（b）never occurs. Also, it readily follows that（15）and（16）hold true

for case（a）, and that（18）holds true for case（c）. Further, it can be shown that the

π =0 ca≥1nassumptions π =0 and ca≥1n imply（21）. Hence all the results continue to hold true for

F (Q )=maxa−bQ, 0 Q∈0, ∞) ca≥1nthe case F (Q )=maxa−bQ, 0 for all Q∈0, ∞) , provided that ca≥1n. 7）

δFinally, we note that the critical discount factor δ in the above proposition is the

smallest common discount factor at which the maximal collusion is the outcome of some

G(δ )subgame perfect equilibrium in G(δ ) , regardless of whether the punishments are

n>n n≤nsymmetric or asymmetric, if and only if n>n. To see this, assume first that n≤n. Then we

π >0have π >0 ; hence（7）implies that

π+
δπ

1−δ > 0.π+
δπ

1−δ > 0.

This means that the stick-and-carrot punishment yields strictly positive discounted profits.

In this case, Theorem 35 in Abreu（1986）assures the existence of a subgame perfect simple

G(δ)strategy profile in G(δ) with more severe（asymmetric）punishments than the stick-and-

carrot punishment. From this follows that the maximal collusion is the outcome of some

G(δ−ε ) ε>0 δsubgame perfect equilibrium in G(δ−ε ) for small enough ε>0. Hence δ is not the
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smallest common discount factor.

n>n π =0Assume next that n>n. Then we have π =0, and（7）implies that

π+
δπ

1−δ = 0.π+
δπ

1−δ = 0.

This means that the stick-and-carrot punishment is the most severe punishment. It therefore

δfollows that δ is the smallest common discount factor.8）
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Notes

1 ）Abreu（1986）assumed that the cost function is linear, but the results referred to here also hold

for quadratic cost functions with increasing marginal costs.

2 ）For details of infinitely repeated games with discounting, see Abreu（1988）.

3 ）See, e.g., Belleflamme and Peitz（2015, p. 360）.

4 ）Note that it suffices to check one-shot deviations for subgame perfection. The conditions are

stated as Lemma 17 in Abreu（1986）.

g (q ) q>q5 ）A proof that g (q ) is strictly increasing for all q>q is straightforward but lengthy ; see Ushio

（2019, Section 7）.

6 ）After the pioneering work of Abreu（1986, 1988）, the properties of subgame perfect equilibria

with most severe punishments have been analyzed for various oligopoly games ; e.g., Bertrand

games（Lambson（1987, 1991））, Cournot-type and Bertrand-type games with product

differentiation（Wernerfelt（1989）, Lambertini and Sasaki（1999, 2002）, Østerdal（2003））,

Hotelling-type spatial competition games（Häckner（1996））.

7 ）See Ushio（2019, Section 5）for details.

8 ）The “if” part of the above result also follows from Theorem 1 in Segerstrom（1991）. This

theorem implies that the result holds when

π−π ≥ π( (a−c )b )−π ( (a−c )b (n−1), (a−c )b ) .π−π ≥ π( (a−c )b )−π ( (a−c )b (n−1), (a−c )b ) .

n>nIt can be verified that this inequality holds if n>n.
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